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Abstract 

 As the Department of Defense’s use of space and space assets increases, 

so does its need for timely and accurate predictions of space weather conditions.  A good 

understanding of the data from satellites together with data from ground stations can help 

model and determine variations in the space environment.  An accurate, real-time 

Disturbance storm-time (Dst) index would be a primary input into current and future 

space weather models. 

The Dst index is a measure of geomagnetic activity used to assess the severity of 

magnetic storms.  The index is based on the average value of the horizontal component of 

the Earth’s magnetic field measured at four ground-based observatories.  Use of the Dst 

as an index of storm strength is possible since the strength of the surface magnetic field at 

low latitudes is proportional to the energy content of the ring current, which increases 

during magnetic storms.  Since ground-based magnetometers are not Air Force owned, 

development of a Dst index using the magnetometer from a DMSP satellite would 

remove the Air Force Weather Agency’s reliance on outside Dst sources 

     This research presents a method to create a Dst-like index using the 

magnetometer of the DMSP F-15 satellite.  The solar quiet signal was determined for this 

magnetometer, and the resulting “Dst” index was compared against the official World 

Data Center Dst for several magnetic storms.  Statistical analysis was accomplished using 

the paired t-test which shows good agreement between the DMSP derived Dst and 

ground-based index.  In all of the storms analyzed, statistical results; mean, standard 
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deviation, confidence intervals, etc., were always an order of magnitude smaller than the 

presented factors for error.    
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DEVELOPMENT OF A DEFENSE METEOROLOGICAL SATELLITE 

PROGRAM (DMSP) F-15 DISTURBANCE STORM-TIME (Dst) INDEX 

 
 
 

I. Introduction 
 
 

1.1 Problem Statement 

 The Air Force Weather Agency (AFWA) is responsible for measuring and 

predicting environmental impacts from the “mud to the sun”.  While the tropospheric 

meteorologist is only concerned with the lowest 12 km of the atmosphere, the space 

weather forecaster has an operational area that extends approximately 150 million km to 

the Sun.  The need to understand and predict how space weather affects Department of 

Defense (DoD) and USAF assets increases as we continually rely on space-based systems 

to conduct global communications, navigation, command and control, intelligence 

collection, and theater defense.  Space weather refers to disturbances in the solar-

terrestrial environment that can degrade or disrupt military systems that operate in or 

through space (Citrone, 2002).  Current military systems potentially impacted by space 

weather phenomena include satellite communications, high frequency radio 

communications, Global Positioning System (GPS) receivers, ground-based missile-

warning/space surveillance radars, orbiting satellites, and high-altitude aircraft. 

 As our use of space increases, so does our need for timely and accurate 

predictions of space weather conditions to protect the nation’s investment in these 

critically important systems.  Unlike the weather situation on Earth, where observations 
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at thousands of locations around the world are recorded, weather conditions in space are 

monitored by only a handful of space-based and ground-based facilities.  Space weather 

forecasters are required to predict conditions in space using a minimum of guidance from 

actual measurements.  A good understanding of the data from satellites together with data 

from ground observing stations and other sources can help model and determine 

variations in the space environment.  With reliable forecasts, space weather intelligence 

can be injected into the decision making process enabling commanders and warfighters to 

anticipate space weather impacts on friendly and adversary systems and exploit this 

information to optimize operations and planning. 

1.2 The Disturbance Storm-Time (Dst) Index 

The Dst or disturbance storm time index is a measure of geomagnetic activity used to 

assess the severity of magnetic storms.  It is expressed in nanoteslas and is based on the 

average value of deviations in the horizontal component of the Earth's magnetic field 

measured hourly at four near-equatorial geomagnetic observatories. Use of the Dst as an 

index of storm strength is possible because the strength of the surface magnetic field at 

low latitudes is proportional to the energy content of the ring current, which increases 

during geomagnetic storms (Dst decreases as the ring current is energized).  Figure 1.1 

depicts the case of a classic magnetic storm, the Dst shows a sudden rise, corresponding 

to the storm sudden commencement, and then decreases sharply, known as the main-

phase, as the ring current intensifies. Once the interplanetary magnetic field (IMF) returns 

northward, and the ring current begins to recover, the Dst begins a slow rise back to its 

quiet time level. The relationship of proportionality between the horizontal component of 
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the magnetic field and the energy content of the ring current is known as the Dessler-

Parker-Sckopke relation.  My method for obtaining Dst will replace the near-equatorial 

ground-based observatories with magnetometer readings from the Defense 

Meteorological Satellite Program (DMSP).  I will apply this method to data to the F-15 

satellite, but it can be extended to all DMSP spacecraft with a boom-mounted 

magnetometer. 

1.3 How the Air Force Weather Agency (AFWA) uses Dst 

Currently, AFWA does not have the capability to produce a forecast or real-time 

Dst index while AFWA’s Space Weather Operations Center does not utilize the Dst 

index.  With the future implimentation of the Magnetospheric Specification and Forecast 

Model (MSFM) the need exists for the capability of producing a real-time Dst index.  A 

quick-look index is available from the World Data Center for Geomagnetism, Kyoto 

University, Japan, but AFWA would prefer to calculate its own index value based on 

DoD-owned data, to ensure continuous warfighter support.  MSFM will fulfill an AFWA 

requirement to host/run an assimilative magnetospheric model which would use both 

observed and forecasted parameters.  The real-time Dst would be a primary input into the 

MSFM.  Having this capability would allow for an easier transition of future models and 

will be used to help with spacecraft anomaly assessments (Shauna Kinkela, AFWA, 

private communication 2004).      
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1.4 The Need for a DMSP Satellite Derived Dst Index 

 Obtaining magnetometer data from DMSP satellites can be a key factor in 

developing a usable Dst index for ingesting into MSFM and other space weather models.  

Use of the DMSP magnetometer data would remove AFWA’s reliance on the outside 

sources for computing the index.  Also, satellite magnetometers have the advantage of 

not having to scale for latitude as is the case for the ground magnetometers.      
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II. Background 
 

2.1 The Space Environment 

 The Earth’s geomagnetic field produces a semi-permeable obstacle, the 

magnetosphere, to the solar wind and produces a cavity around which most plasma flows 

(Tascione, 1994).  A cross-section of the magnetosphere is shown in Figure 2.1.  The ring 

current can be seen in the middle of the figure.  The size of the magnetosphere is 

determined by the pressure balance.  Magnetospheres are very asymmetric.  They are 

compressed on the side facing the solar wind and elongated in the other direction, 

forming a magnetic tail.  The sunward magnetopause on the equator for the Earth is 

located typically at about 10 earth radii (Re) (Parks, 2004).  The near-Earth environment 

consists of a neutral and ionized atmosphere.  The magnetosphere, within the Earth’s 

ionized atmosphere, is also composed of the ionosphere (70 km to 1000 km) and 

plasmasphere (1000 km to 4 Earth radii (Re)) as measured on the equator.  Just beyond 

the near-Earth environment is interplanetary space which is dominated by a high speed, 

tenuous plasma streaming out from the Sun’s corona.  This plasma, an ionized gas 

flowing out into interplanetary space, is known as the solar wind (Rich, 1994). 

  

2.1.1 The Solar Cycle 

 The solar cycle is a measure of the periodic variation of the level of activity on the 

Sun.  The most obvious feature which changes are the number of sunspots visible on the 

surface of the Sun.  The number of sunspots on the Sun is not constant. In addition to the 

obvious variation caused by the Sun's rotation (sunspots disappear from view and then re-
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appear), over time new sunspot groups form and old ones decay and fade away.  When 

viewed over short periods of time (a few weeks or months), this variation in the number 

of sunspots might seem to be random.  However, observations over many years reveal a 

remarkable feature of the Sun: the number of sunspots varies in a periodic manner, 

usually described as the 11 year cycle (in actuality, the period varies, and has been closer 

to 10.5 years this century).  The 11 year sunspot cycle is related to a 22 year cycle for the 

reversal of the Sun's magnetic field.  In 1848 Johann Rudolf Wolf devised a method of 

counting sunspots on the solar disk called the Wolf number.  Today the Wolf number 

(averaged from many observing sites) is used to keep track of the solar cycle.  Although 

the number of sunspots is the most easily observed feature, essentially all aspects of the 

Sun and solar activity are influenced by the solar cycle.  Because solar activity, such as a 

magnetic storm, is more frequent at solar maximum and less frequent at solar minimum, 

geomagnetic activity also follows the solar cycle (Hathaway, 2004). 

 The level of the geomagnetic activity is measured using different activity indices, 

most of which are based on ground-based magnetometer recordings.  These recordings 

can be used to study the longer trends in the solar activity.  Variability in the geomagnetic 

activity has several sources.  These sources are; variability in the Sun itself that is 

reflected in the solar wind, the 11 and 22-year solar cycles, the 1.3 year variability (which 

involves the Earth's orbit around the Sun taking it to different solar latitudes (annual 

variability)) (Zieger and Mursula, 1998), the Earth's orbit around the Sun that changes 

the orientation of relevant coordinate systems (semi-annual variation) (Russel and 

McPherron, 1973), rotation of the Sun around its axis, which can lead to periodicities at 
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27 days and 13-14 days known as recurrent variability.  Figure 2.2 shows the periodic 

nature of the solar cycle throughout the last two and a half centuries. 

 

2.1.2 The Ring Current 

 The ring current is one of the major current systems in the Earth's magnetosphere.  

It circles the Earth in the equatorial plane and is generated by the longitudinal drift of 

energetic (10 to 200 keV) charged particles.  Figure 2.3 shows the ring current.  The 

charged particles that make up the ring current and radiation belts are trapped in the 

Earth's magnetic field, bouncing back and forth along the magnetic field lines between 

"mirror points" in the northern and southern  hemispheres (Hamilton, 1988).  These are 

the points in a non-uniform magnetic field toward either end of a field line where the 

magnetic field becomes strong enough to cause a particle traveling along that field line to 

reverse direction.  In addition to their bounce motion, the trapped particles also drift 

azimuthally (in longitude): ions to the west, electrons to the east. It is this drift motion 

that creates the ring current. The two-dimensional surface that these particles define 

through their combined bounce and drift motions is known as a "drift shell" or "L shell".  

Locations within the ring current/radiation belt region of the inner magnetosphere are 

typically given in terms of the distance, in Earth radii, from the center of the Earth to the 

point where a particular drift or L shell intersects the plane of the geomagnetic equator.   

 Charged particles that make up the ring current are trapped on field lines between 

L~2 and 7.  During geomagnetic storms, ring current particle fluxes are dramatically 

increased, with the peak enhancements occurring in the inner portion (at L < 4).  The 

quiet-time ring current consists predominantly of the hydrogen ion, H+, while the storm- 
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time ring current also contains a significant component of the ionospheric oxygen ion, 

O+, whose contribution to ring current energy density may even exceed that of H+ for 

brief periods near the maximum of particularly intense storms.  

The formation of the storm-time ring current has been attributed to two different 

processes: (1) the injection of plasma into the inner magnetosphere during the expansion 

phase of magnetospheric substorms and (2) increased convective transport of charged 

particles from the nightside plasma sheet deep (L < 4) into the inner magnetosphere as a 

result of an intensification of the Earth's dawn-dusk convection electric field during 

extended periods of a strong southward Interplanetary Magnetic Field (IMF).  The 

present understanding of ring current formation tends to favor the enhanced convection 

model over the substorm plasma injection model; however, it is recognized that 

substorms, while not the primary driver, nonetheless play a significant role in the growth 

of the storm-time ring current (e. g., by energizing ions in the near-Earth plasma sheet 

prior to their transport into the ring current) (Hamilton, 1988).  

 The storm-time growth of the ring current lasts from 3 to 12 hours and constitutes 

the "main phase" of a magnetic storm. Following this main phase, the ring current begins 

to decay, returning to its pre-storm state in two to three days. (Full recovery can require 

as long as a month in the case of major geomagnetic storms).  During the storm recovery 

phase, particle transport into the ring current slows, allowing various loss processes to 

reduce ring current particle fluxes to their quiet-time level. 
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2.1.3 Solar Quiet (Sq) Signal 

 When applied to the geomagnetic field, solar quiet is a descriptive word 
 
specifically meaning geomagnetic levels such that the Ap geomagnetic index is less than  
 
8.  More generally, solar quiet refers to a period of time when the space environment is 
 
storm-free.  Various “solar quiet” current systems, such as the ionospheric dynamo 

current, still flow during calm periods.  Thus, the first step in investigating magnetic 

storms is to model this “solar quiet” signal, so it may be removed from magnetic 

measurements taken during space weather storms. 

 

2.1.3.1 Solar Quiet Current System 

 As the name implies, the Sq current system is driven by the sun and its 

characteristics are defined during geomagnetically quiet periods.  The process responsible 

for Sq currents is the thermospheric (neutral) winds that push the conducting ionosphere 

across the Earth’s magnetic field.  This produces an electromotive force via Faraday’s 

Law, and the result is the current system illustrated in Figure 2.4.  The figure shows the 

Sq system during equinox.  On the dayside, differential solar heating produces high 

pressure at low latitudes.  Thermospheric winds in both hemispheres blow generally 

poleward in response to the resulting pressure gradient.  This sets up a two-cell Sq current 

system in the dayside E-region.  At night the winds blow equatorward, reversing the 

current flow directions in the nighttime cells.  However, current magnitudes are much 

smaller because nighttime ionospheric densities are reduced by one to two orders of 

magnitude.  This entire pattern is fixed to the sun and the Earth rotates underneath it.  

(Della-Rose, 1999) 
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 The nature of the Sq current system has a marked effect on determining a satellite 

based Dst index.  As will be outlined in my Methodology section, an ascending and 

descending solar quiet value will need to be calculated due to the Sq current system being 

stronger during the day than at night.  The separate calculations are required since the 

orbit of the F-15 satellite (see section 2.5.1) makes its ascending pass during darkness and 

its descending pass during the day.     

 

 

 

 

Figure 2.4.  The solar quiet current system during equinox.  (Volland, 1884) 
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2.2 Geomagnetic Indices 

 In an effort to estimate the level of geomagnetic activity, scientists have 

developed a series of indices designed to give a semi-quantitative measure of this 

activity.  Also, most solar-terrestrial models need geomagnetic indices to specify the solar 

and magnetic disturbance level. These indices are usually parameters that can be 

monitored continuously with ground-based equipment or that can be derived from 

continuously monitored parameters.  The reason for the popularity of magnetic indices is 

twofold.  First, they allow researchers to condense vast amounts of data into manageable 

parameters which are presumably correlated with space weather storming.  Second, the 

correlations established between indices and other space physics parameters can help 

scientists further unlock the physics of space weather storms. 

The four most commonly used indices are Kp, ap, AE, and Dst.  The Kp index is a 3-hour 

index on a quasi-logarithmic scale of the level of worldwide geomagnetic activity.  The 

index is derived from a statistical composite of variations from a selected group of sub-

auroral zone stations.  The 3-hourly ap index is a linear scaled index obtained directly 

from Kp.  The AE index describes the disturbance level recorded by auroral zone 

magnetometers.  Again, the Dst index monitors the global variations of the ring current, 

which encircles the Earth close to the magnetic equator in the Van Allen belt of the 

magnetosphere and will be the focus of my research (Rostoker, 1972). 

 

2.3 Ground-Based Magnetometers 

 AFWA maintains ground-based magnetometer stations to observe the ionosphere-

magnetosphere environment.  In addition, AFWA receives space environmental data 
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from the National Oceanographic and Atmospheric Administration (NOAA) operated 

ground-based observatories, and stations operated by other agencies and countries.  The 

basic sensor package at most observatories consist of a triaxial fluxgate magnetometer 

which gathers 3-D magnetic data, typically the horizontal intensity, declination, and the 

vertical component (H, D, and Z respectively), plus a proton magnetometer, which 

measures the total intensity of the field (F).  The redundancy between these two 

measurement systems allows for consistency checks that are useful for troubleshooting. 

Moreover, a flux-gate sensor-electronics package is prone to deliver data that drift on an 

absolute scale, primarily as the result of changes in ambient temperature; proton 

magnetometer data also drift with temperature, but usually much less than flux-gate data. 

To reduce this baseline drift, the sensors and electronics are housed in well-insulated, 

thermostatically-controlled buildings.  Observatory standards must be consistent with 

those set by Intermagnet, an international consortium which promotes the worldwide 

collection of high-quality, ground-based magnetometer data. 

 

2.4 Ground-Based Dst Index 

 Discussion of an index to monitor the equatorial ring current variation were 

started in the late 1940’s by J. Bartels, chairman of the Committee on Characterization of 

Magnetic Disturbances of the International Association for Terrestrial Magnetism and 

Electricity (IATME) which later became the International Association of Geomagnetism 

and Aeronomy (IAGA).  The first attempts at finding a Dst index were made in the late 

fifties and early sixties.  In 1964 M. Suguira published a paper of Dst values and in 1967, 

Sugiura and Hendricks proposed the first derivation of a Dst index.  Due to modifications 
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in the station network and improvements to the derivation process today’s accepted Dst 

was developed in 1981 by Sugiura.  This method forms the basis of the Dst index that I 

will later compare my DMSP-derived Dst index against.  Plots and data using this 

ground-based method can be found at the Data Analysis Center for Geomagnetism and 

Space Magnetism Graduate School of Science, Kyoto University, Kyoto, JAPAN via 

http://swdcwww.kugi.kyoto-u.ac.jp/.   

 

2.4.1 Method for Deriving the Ground-Based Dst Index 

 Data from a network of four near-equatorial geomagnetic observatories are used 

to derive Dst.  Figure 2.5 is a map of the observatories and gives a table of the  

geographical coordinates of each.  The observatories are located at Honolulu, Hawaii, 

San Juan, Puerto Rico, Hermanus, South Africa and, Kakioka, Japan.  These stations 

were chosen based on the quality of their observations and because their locations are 

sufficiently distant from the auroral and equatorial electrojets.  The observatories are 

spatially distributed as evenly as possible.  To compute Dst, one must eliminate the 

magnetic signatures of both the solar quiet currents and the Earth’s main (internal) 

magnetic field (or baseline).  These topics are treated in the following two sections.   

 

 

 

 

 

 17

http://swdcwww.kugi.kyoto-u.ac.jp/


 

 

 

 

Figure 2.5.  Location and coordinates of the magnetic observatories used in the derivation 
              of Dst.  (Suguira 1981) 
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2.4.1.1 Finding the Baseline 

 The Earth’s main field magnetic signature, or baseline, for the horizontal 

component of the geomagnetic field, H, must be defined for each observatory before Dst 

can be computed.  This baseline changes slowly with time as the Earth’s magnetic 

dynamo changes; this is known as the “secular variation.”  For each station, the annual 

mean values of H, calculated from the “five quietest days” (the five quietest days of each 

particular station not to be confused with the worldwide five international quiet days 

based on Kp index) of each month form the database for the baseline.  The baseline is 

expressed in a power series in time and the coefficients for terms up to the quadratic are 

determined by the methods of least squares, using the annual means for the current year 

and the four preceding years.   

The baseline is expressed as 

  Hbase(τ) = A + B τ + C τ2    (2-1) 

Where τ is the time in years measured from the reference epoch. 
 
The baseline value Hbase(T) calculated from (2-1) for each Universal Time (UT) hour of 

the current year is subtracted from the observed hourly average H value, Hobs(T), to form 

the hourly average station deviation, ∆H(T): 

  ∆H(T) = Hobs(T) - Hbase(T)    (2-2) 

These hourly station deviations, combined with a knowledge of the station solar quiet 

(Sq) magnetic signatures (described below), form the basis of the Dst index computation.   
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2.4.1.2 Solar Quiet Signal (Sq) Determination 

 The average solar quiet variation, Sq, for each month is determined from the 

values of H(t) for the internationally selected five quietest days of the month (as stated, 

these days are determined by having the lowest Kp value of all the days of that particular 

month).  The quietest days are determined as a function of UT time.  To define an 

average Sq variation for the local day of each observatory, averages are formed for the 

local hours using five local days that have the maximum overlap with the international 

five quietest days.  Using the hourly values immediately before and after the selected 

local days, the linear change is found and subtracted from the Sq variation.  This method 

removes the non-cyclic change, which is part of the Dst variation.  The 12 sets of the 

monthly average Sq determined for the year are expanded in a double Fourier series with 

the local time, t, and the month number, s, as follows: 

  Sq(t,s) = ∑∑Amncos(mt + αm)cos(ns + βn) (2-3) 

This equation allows for calculation of Sq(T) at any UT hour, T, of the year.  This 

procedure is applied to each of the four observatories. 

 

2.4.1.3 Hourly Equatorial Dst Index 

 For each observatory the hourly disturbance variation, D(T), is given by: 

  D(T) = ∆H(T) – Sq(T)   (2-4) 

D(T) is then averaged over the four observatories and normalized to the dipole equator 

by: 

  Dst(T) = D(T)/cos φ    (2-5) 
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Where the denominator is the average of the cosines of the dipole latitudes, φi (I = 1,4), 

of the observatories contributing to the average.  The normalization procedure minimizes 

the undesired effects from missing hourly values.  Figure 2.6 shows a Dst plot for 

November 2001 from the Kyoto website (Entire section from Sugiura and Toyohisa, 

1986).  

 

 

 

 

 

Figure 2.6.  A plot of Dst for the month of November 2001.  (Kyoto University website)

 21



 

2.5 The DMSP Satellite 
       
 The Defense Meteorological Satellite Program (DMSP) is a Department of 

Defense (DoD) program run by the Air Force Space and Missile Systems Center (SMC). 

The DMSP designs, builds, launches, and maintains satellites monitoring the 

meteorological, oceanographic, and solar-terrestrial environments.  The DMSP mission is 

to provide global visible and infrared cloud data and other specialized meteorological, 

oceanographic and solar-geophysical data in support of DoD operations.  The first DMSP 

spacecraft was launched in January 1965 and the latest (F-16) was launched in late 2003.  

The satellites are in near circular, sun-synchronous, polar orbits at an altitude between 

835 to 850 km.  AFWA uses data from DMSP satellites for determining, on an hourly 

basis, the state of both the tropospheric and the space environments (Rich, 1994).  F-15, 

launched in December of 1999 and still operational, is the satellite whose magnetometer 

data I used for this research. 

 

2.5.1 The DMSP F-15 Satellite Orbit 

 As stated, the data for my research comes exclusively from the F-15 satellite 

particularly the magnetometer data from January 2000 through December 2003.  All 

DMSP satellites are polar-orbiting.  The F-15 satellite takes approximately 100 minutes 

to orbit the globe giving up to 14 orbits per day.  Figure 2.7 shows the ascending F-15 

satellite.  Notice that when the satellite is ascending, going from the southern to northern 

hemisphere, the orbit is in the nighttime phase.  Conversely, Figure 2.8 shows the F-15 in 

the descending portion of its orbit, traveling from the northern to southern hemisphere, 

with its orbit in the daytime phase.  Also, the figures show the F-15 position at the 
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magnetic equator.  As will be described in the Methodology chapter, the DMSP  

magnetometer readings at the magnetic equator crossings will be used to determine the 

Sq signal and the Dst index.  

 

 

Magnetic

equator 

 
Figure 2.7.  DMSP F-15 ascending, nighttime phase orbit.  (https://swx.plh.af.mil/dmsp.html) 
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Figure 2.8.  DMSP F-15 descending, daytime phase orbit.  (https://swx.plh.af.mil/dmsp.html) 
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2.6 Special Sensor Magnetometer (SSM) and Coordinate System 

 DMSP spacecraft are outfitted with an array of sophisticated space 

environmental sensors.  The SSM is a triaxial fluxgate magnetometer used as a space 

environmental sensor for spacecrafts F12 through F20.  The instrument was designed and 

built at NASA’s Goddard Spaceflight Center.  A “proof of concept” SSM instrument was 

built from surplus magnetometers by Johns Hopkins University/Applied Physics 

Laboratory and flown on F7.  

 The magnetometer measures the strength and direction of the total geomagnetic 

field at the satellite’s location with a range of +/- 64,000 nT with a sensitivity of 

approximately 50 nT.  The magnetic field has three sources: (1) the magnetic field from 

the solid earth, (2) the magnetic field from electrical currents flowing in the ionosphere  

and magnetosphere, and (3) the magnetic field from the spacecraft.  Measurement of (2) 

is the main objective of the SSM with (1) being a secondary objective.  Source (3), 

spacecraft noise, is a nuisance and eliminated from the data as much as possible.  Since 

spacecraft noise rapidly decreases in magnitude with increasing distance from the source, 

the SSM sensor is placed at the end of a 5m boom for spacecrafts F15 to F20.  A 

schematic of spacecraft F15 is shown in Figure 2.9. 

 The parameters measured by the SSM are the three components of the magnetic 

field vector.  The magnetometer takes and reports 12 readings per second for the Y and Z 

axes.  Only 10 of the 12 readings are reported for the X axis due to telemetry limitations.  

The SSM’s axes are aligned such that X is downward and aligned to local vertical 
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within 0.01 degree, Y is parallel to the spacecraft’s velocity vector with ascending node 

in the afternoon/evening sector, and Z is away from the solar panel and anti-parallel to 

the orbit normal vector.  The fluxgate sensors are constructed using a ring core geometry.  

Figure 2.10 shows a photo of the SSM and the construction of one of three identical 

sensors.  Keys to the design of the sensor are the feedback coil and the sensor core.  

These elements can be shown to be the most significant sources of error, both in the form 

of alignment and temperature stability (Rich, 1994). 

 Monitoring of the ionosphere is the primary space environmental mission of the 

Air Force.  Subtracting of the Earth’s internal magnetic field from SSM data one can 

obtain a measurement of the disturbed magnetic field created by electrical currents 

flowing along geomagnetic field lines from the ionosphere to the magnetosphere.  These 

currents, FACs, are generally confined to the auroral zones (Rich, 1994).  (All material in  

this section regarding the SSM instrument was taken from the AFRL Space Weather 

Center of Excellence, Space Weather Data Survey, website (https://swx.plh.af.mil/).) 

 

2.7  Satellite and SSM Factors for Error and Space Environment Considerations  

 As with any instrumentation, factors for error must be considered when analyzing 

the results of the magnetometer readings from the DMSP F-15 satellite.  The placement 

of the SSM on a 5 meter boom started with the F-15 satellite vastly improving 

magnetometer readings by removing spacecraft noise of body-mounted magnetometers of 

earlier missions.  Even with this improvement many sources for error still exist for the  

There are four instrument factors for error and two space environments factors that lead 

to differences between the official Dst index and a satellite-derived index.  The 
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Figure 2.10.  Photo and elements of the SSM. (Deloney 2000, Rich,  1998) 
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 SSM errors include calibration errors, the spacecraft’s direct current magnetic 

field, the solar cell magnetic field, and the satellites attitude.  The space environment 

imposes two important factors which are uncertainty in the subtraction of the Earth’s 

main magnetic field and difference between SSM and ground-based magnetometer 

readings due to the SSM, orbiting at an altitude of approximately 850 km, being closer to 

the ring current.   

 As stated the instrument uncertainty value is due to four different factors.  First, 

SSM calibration is documented to be less than 20 nanoteslas (nT) but may be 

significantly less.  Next, the spacecraft’s d/c magnetic field at the location of the sensor 

has been determined to an accuracy of ±20 nT at the time of in-flight calibration.  Also, 

there are orbit dependent variations in the magnetic field that show up in the readings.  

The solar panel of the satellite rotates 360 degrees per orbit.  When the solar panel is 

closest to the magnetometer the magnetic field related to currents in the panel can be 

detected with a strength of 5-30 nT.  Finally, the spacecraft’s attitude is maintained to an 

accuracy of  ±0.010 degrees (most of the time) to ±0.020 degrees (at all times).  Since the 

Earth’s field is approximately 45,000 nT over the poles, the lack of alignment knowledge 

gives an error of up to ±80 nT in the magnetic vector (Bx, By, and Bz).   

 The local space environment at satellite altitude leads to two significant factors 

for difference due to the dynamo magnetic field.  The International Geomagnetic 

Reference Field (IGRF) is a mathematical description of the Earth's main magnetic field 

used widely in studies of the Earth's deep interior, the crust and the ionosphere and 

magnetosphere.  The difference between the IGRF model field and the actual magnetic 

field at DMSP orbit is approximately ±50 nT over most continental areas.  Over poorly 
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surveyed regions of the globe, this error can be as high as ±150 nT.  Lastly, with the 

satellite location 850 kilometers closer to the ring current than ground-based 

observatories, one would expect a higher DMSP derived Dst value.  (All factors for error 

from Rich correspondence, 2004). 

 What do all these uncertainties add up to?  The short answer turns out to be, “It 

depends”.  If all the factors for error acted in concert and operated in the same direction 

they would add-up to the same magnitude of a sizable magnetic storm (a few hundred 

nTs).  More realistically, some of the error factors will not act in the same direction 

essentially canceling-out portions of the error.     
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III. Methodology 
 

3.1 DMSP Derived Dst Index 

 This section describes the method I used to create my DMSP derived Dst index.  

The technique is similar to the accepted ground-based method in a couple of ways.  First, 

I obtain the five international quiet days, based on Kp, for each month to obtain a solar 

quiet signal value for the month with a slight variation that will be described in section 

3.3.  My method creates an ascending and descending solar quiet signal for each month 

of each year.  My research analyzed four years (2000-2003) of SSM data therefore, each 

month’s solar quiet values were then averaged over the four years to produce a total of 

two (one ascending and one descending) final Sq values for each month of the year.    

 Analyzing the Dst for a day with a magnetic storm was accomplished by 

subtracting the solar quiet value from the magnetometer readings from the satellite.  I 

then averaged the ascending and descending values (after subtraction of Sq signal) and 

corresponding time of magnetic equator crossing.  These results were then plotted with 

the actual Dst index for the same time period.   

 

3.2 Information and Support from Air Force Research Laboratory (AFRL) 

 All of the F-15 magnetometer data was provided by Dr. Frederick Rich from 

AFRL, Space Vehicles Directorate, Hanscom AFB, MA.  Dr. Rich provided me with six 

CDs consisting of SSM data from the F-14 (01 Jan 2000-01 May 2001), F-15 (01 Dec 

1999-15 Jul 2004), and F-16 (01 Oct 2003-15 Jul 2004) satellites.   
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3.2.1 Data Files and the Interactive Data Language (IDL) Program 

 The CDs contain daily files for the dates listed above.  To read the data the files 

must be read into IDL using a rdssm.pro program which was also provided by Dr. Rich.  

The program creates a text file tabulating the data as shown in Table 3.1.  The table 

produced lists the year, day (Julian date), hour, minute, and second in UT the 

magnetometer reading was taken.  Also, for each reading, the geomagnetic latitude and 

longitude and altitude are given.  The table also lists the magnetometer reading in 

seconds for each component of the magnetic field (Delta Bx, Delta By, and Delta Bz).  

The delta prefix is a result of IDL subtracting the Earth’s main field via the IGRF model.   

 There is an option in the IDL program to create a graphical output.  Figure 3.1 

show a plot of SSM data for the Bx, By, and Bz components with time shown along the 

horizontal axis.  This particular plot was generated while the satellite ascended from 40 

degrees north geographic latitude, traversed the pole, then descended to, again 40°N.  

Note the peaks in the Bz component.  These are due to the field aligned or Birkeland 

currents located in the higher latitudes, near auroral zones.  Although it does not 

appreciably contribute to the overall geomagnetic configuration, the high-latitude field-

aligned current system provides an important coupling mechanism between the 

magnetosphere and the ionosphere.   

 

3.3  Identifying the Solar Quiet Signal 

 The current method of finding Dst using ground-based magnetometers is not 

without complications.  As stated previously, the magnetometer stations are evenly 

distributed near the magnetic equator.  The data must then be corrected for the distance 
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Table 3.1.  IDL text file output of SSM data 

 

Figure 3.1.  IDL graphical output of SSM data. 
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away from the magnetic equator using equation 2.3.  One advantage of the DMSP 

satellite is that this correction is not needed.  I am able to pick off the magnetometer 

reading at the magnetic equator (usually to within ±.03 degrees of latitude).  Again, I start 

with the five international quiet days, as defined by the International Service of 

Geomagnetic Indices, for each month inspected against the monthly Dst index (Figure 

2.6) for assurance that the day is “Dst quiet”.  The quiet days used are listed in Table 3.6.  

Days marked with an asterisk are not considered internationally quiet.  During these days 

some magnetic storming is present and, as a result, I chose a more “Dst-quiet” day to 

compensate.  

 

3.3.1 Finding the Magnetometer Reading at the Magnetic Equator 

 Dst measures magnetic field changes at the magnetic equator due to the storm-

time ring current where these changes are in the plane parallel to the ground.  Once the 

five quietest days are found for each month, the next step is to find the time the satellite 

crosses the magnetic equator.  This happens twice per orbit; with an ascending (traversing 

northward from southern to northern latitudes) and descending (traversing southward 

from northern to southern latitudes) pass.  I compute separate Sq values for ascending 

and descending passes since the orbits traverse the daytime terminator.  The ascending 

pass occurs in darkness while the sun shines on the descending pass.  Since the E-region 

dynamo is stronger in the day than at night, calculating separate ascending and 

descending solar quiet values provides an improved accounting of the Sq current system.  

 To find the time the satellite crosses the magnetic equator I turned to the Coupled 

Ion Neutral Dynamics Investigation (CINDI) which is a NASA sponsored “Mission of  
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Opportunity” conducted by the University of Texas at Dallas (UTD).  UTD’s DMSP data 

distribution website (http://cindispace.utdallas.edu/DMSP) allows for easy manipulation 

of DMSP data for each satellite.  Table 3.2 shows a portion of a dataset I used for finding 

the times F-15 crossed the magnetic equator.  As shown, the magnetic latitude, labeled 

MLAT, goes to zero at a time of 45300 seconds UT.  This particular pass corresponds to 

a descending pass since when looking back in time the magnetic latitude values are 

positive, that is, coming from the northern hemisphere and into the southern hemisphere 

(MLAT values are negative with increasing time).  

 

3.3.2 The Final Solar Quiet Monthly Value 

 After recording time of magnetic equator crossing, I then look to the data files 

created by IDL to find the corresponding Delta By magnetometer reading at 45300 

seconds (Table 3.3).  Delta By is used since the Y-component of the SSM’s coordinate 

system is always approximately parallel to the ground.  Variations in the magnetic field 

due to the storm-time ring current are mostly (not perfectly aligned with the magnetic 

meridian, therefore, some Z component effect) along the DMSP’s Y-axis at the magnetic 

equator crossing.  Also, the delta prefix is added to denote the subtraction of the Earth’s 

main magnetic field via the IGRF model.  Once all the magnetometer readings for each 

equator crossing are recorded, I then tabulate the data in an Excel spreadsheet.  An 

example of the spreadsheet is shown in Table 3.4.  For each quiet day there are about 14 

orbits with corresponding ascending and descending passes (A and D on the spreadsheet).  

The magnetometer readings are then averaged.  This gives an ascending and descending 

Sq value for that day.  I then average the values of all five quiet days for a monthly 
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Magnetic Time in 
latitude seconds 

 

Table 3.2.  Time of magnetic equator crossing. 

Time in Magnetometer 
seconds reading 

 

Table 3.3.  Time and Delta By magnetometer reading. 

Magnetometer 
reading 

 

Table 3.4.  Excel spreadsheet For Sq.  Magnetometer readings throughout the day. 

 36



 

average for that year.  Finally, for a given month of the year, I combined the ascending 

Sq values for all four years into an average, likewise for the descending values.  This 

method is repeated for all twelve months.   

 The solar quiet values for each month are plotted in the next two figures.  Figure 

3.2 shows the ascending solar quiet values throughout the calendar year while Figure 3.3 

depicts the descending Sq signal.  The years 2000 to 2003 are plotted as well as the total 

value which is the average of the four years.  Once the solar quiet values are derived any 

storm-day’s magnetometer readings can be used to create an F-15 satellite-derived Dst 

index.   

 

3.4 Creation of a DMSP F-15 Dst Index 

 Now that solar quiet values (one ascending and descending) are determined for 

each month a DMSP derived Dst index can easily be created for the F-15 satellite.  

Similar to finding the solar quiet signal, on a storm day in question, I find the time the 

satellite passes the magnetic equator using the UTD website and the IDL derived data 

files.  I recorded the time in seconds and the magnetometer reading for that time in the 

same Excel spreadsheet for that particular month.  Table 3.5 shows that spreadsheet for 

the month of February.  Shown is an example of storm days 12 and 13 February 2000.  In 

the table the final ascending and descending Sq values for the month are at the top.  I then 

subtracted the ascending and descending Sq values from the corresponding magnetometer 

readings.  The descending values are then given a negative value, that is,  -(D-Sq).  This 

procedure is accomplished for both storm days. 

 In order to obtain the final DMSP Dst index for a given orbit, I average the time 
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January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 
* Not one of 

 

Tab

 

s 
Sq 

value
 

Table 3.5.  Subtraction of Sq from storm-day magnetometer readings. 

2000 2001 2002 2003
8, 10*, 17, 18, 21 5*, 6, 7*, 8*, 10* 3, 4, 5, 6, 30 5*, 6, 13*, 14*, 15* 
4, 17, 18, 19, 20 3, 4, 17, 18, 25 14, 15, 16, 23, 24* 11, 13, 23, 24, 25 
3*, 26, 27, 28* 10*, 11, 15, 16, 17 12*, 13*, 14, 27*, 28 8, 12, 24, 25, 26 

14, 15*, 21*, 22, 23* 21, 25, 26, 27, 30* 5, 7*, 8, 26, 27* 6, 7, 12, 13, 19 
7, 11, 19*, 20, 21 1, 5, 21, 30, 31 1, 2*, 3*, 4*, 31 3, 4, 16, 17, 18 
7*, 16*, 17, 25, 30 12, 22, 23, 28, 29 6*, 7*, 21*, 25*, 26* 5, 6*, 7*, 12, 13 

5*, 6, 7, 8*, 9* 2, 7, 19*, 20, 28 2, 3, 4, 28*, 29* 8, 9, 10, 23*, 24* 
18, 19, 20*, 25, 26 11, 15, 16, 24, 29 6, 7, 8*, 24, 25 5, 14*, 15*, 16, 31 
9, 10, 11, 14, 22 1, 7, 9, 10, 20* 20, 23, 24, 25, 29 7, 14, 28, 29, 30 

9, 18*, 19*, 20, 21, 6*, 7, 16*, 17, 18 19*, 20*, 21, 22, 23* 8*, 9*, 10, 11, 12 
2, 3, 15, 16, 17 3, 13*, 14, 15*, 30 1, 8, 9, 16, 17 7*, 8, 27, 28, 29 

14, 15, 20, 30, 31 1*, 8*, 9, 10, 11 6*, 11, 12, 13, 17 3, 18, 19, 25, 29 
the five international quiet days.  

le 3.6.  The five “quiet days” used to determine the DMSP F-15 solar quiet signal. 

Magnetometer reading
Solar quiet signal 

-(     ) 
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between corresponding ascending and descending passes along with their magnetometer 

adings minus the Sq value.  To clarify, I average the first ascending final value of the 

meter reading minus corresponding Sq value) with the first 

descending final value of the day along with their times crossing the magnetic equator. 

Next, the second ascending/descending f lues and times are averaged and so on.  

Also, if, for example, an ascending pass is unavailable, the corresponding descending 

value will not be used.  The averages are shown in the center columns of Table 3.7.  Also 

shown are the actual ground-based hourly Dst values obtained from the Kyoto website 

mentioned earlier.   

 The hourly value for the ground-based Dst was listed to correspond to the 30 

minute mark between the hours.  For example, the Dst value for 0200-0300 UT is listed 

or a time of 0230 or 9000 seconds as seen on the table.  The right hand column is the list 

rom Table 3.5 of the individual ascending and descending magnetometer values minus 

the corresponding solar quiet value.  The data from Table 3.7 is plotted to create

g that o  the F-15 du

a ing and  I  for  for

t lve mon h th o s h of

N er.  Figures 3.4 - 3.16 show these Dst indices for each of these storms.
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day (storm magneto
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raph like f Figure 2.6 with addition of my  Dst and the indivi al 
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Table 3.7.  Actual and F-15 Dst spreadsheet. 

F-15 Dst value etometer Time and magn
reading minus Sq 

Actual Ground-based Dst 
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IV. Results and Future Work 
 

4.1 Results 

 This section discusses the comparison between the actual ground-based Dst index 

and my derived DMSP Dst for the F-15 satellite.  A statistical comparison is presented 

comparing the two Dst curves.  I’ll also scrutinize the solar quiet signal results as well as 

the Sq ascending and descending plots of Figures 3.2 and 3.3.  Finally, advantages and 

limitations of my method for finding Sq and a final DMSP Dst are be discussed.      

 

4.1.1 Comparison of Actual Ground-Based Dst to DMSP F-15 Derived Dst 

 The resulting plots in Figures 3.4 – 3.16 show a good comparison between the 

ground-based Dst values and the DMSP F-15 derived trace.  Although in some cases the 

curves are slightly out of phase, the shapes of the graphs mostly agree with each other.  

The phase differences could be a result of plotting the hourly ground-based Dst value at 

half past each UT hour.  As stated in section 3.4, my DMSP derived Dst values are 

plotted at a time halfway between the two magnetic equator crossings (one descending, 

one ascending) used to derive that index value.  In all cases the DMSP derived Dst shows 

a clear sudden commencement, main phase, and recovery phase that is shown in the 

traditional Dst trace.  Table 4.1 provides the statistical analysis of the storms. 

  

4.1.2 Statistical Analysis Between Ground-Based and the F-15 Derived Dst 

 Statistical analysis between the two Dst curves also shows good agreement.  

Analysis of the curves was accomplished using two spreadsheet programs.  The graphs  
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were made using Excel.  Onc  the difference fields, 

DMSP derived Dst minus the actual ground-based value, between the two curves and 

performed a paired t-test. This required me to interpolate the two time series (DMSP-

derived and official Dst) to obtain pairs of values valid at the same time.  I used Origin 

6.1 to accomplish this interpolation.  For consistency with the official Dst cadence, I 

chose to interpolate at one-hour intervals.   

 Table 4.1 is an analysis of the difference between the entire curves.  The table 

shows an analysis for each storm using the differences between data points of the curves 

selected once every hour.  Interpolating data points once every hour gives 48 data points 

(two days) for all the months except for March (1 day, 24 data points) and October (3 

days, 72 data points).  Notice that all of the mean differences have a positive value.  A 

positive mean difference indicates that the DMSP Dst has smaller (negative) values than 

the ground-based Dst.  That is, the DMSP Dst shows a slightly weaker magnetic storm.   

 This result is counter-intuitive to the fact that the satellite, being 850 kilometers 

closer to the ring current than the ground-based observatories, should report a stronger 

storm.  This may be partly explained by the fact that, as the F-15 satellite orbits the 

planet, the By axis does not align perfectly with a given magnetic meridian.  Adding the 

 Table 4.1 also lists the time series statistics and data using a paired t-test.  Given 

two paired sets, DMSP and observed Dst values, the paired t-test determines whether 

they differ from each other in a significant way under the assumptions that the paired 

differences are independent and identically normally distributed.  Data from the paired t-

 

e the graphs were made I analyzed

delta Bz to the results could recover some of this error.        

test shows the standard difference error and a 95% confidence interval for the mean value
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of the paired differences.  The discrepancy of the confidence interval about the mean 

depends on the size and variability of the sample.   

 The standard deviations and the high end of the confidence intervals of Table 4.1 

for all months of storms are in the low tens of nanoteslas.  In section 2.7 I totaled the 

factors for error to be about a few hundred nT if all acted in concert and operated in the 

same direction.  The standard deviations and confidence intervals are well within the total 

error value by one order of magnitude.  This illustrates very good agreement between my 

DMSP derived Dst and the existing ground-based storm index. 

 

4.1.3 Results of the DMSP F-15 Solar Quiet Signal 

 Figures 3.2 and 3.3 show the solar quiet signal for the ascending and descending 

passes of the DMSP F-15 satellite.  Figure 4.1 shows the solar cycle for the past ten years 

as well as a forecast of the progression out to 2008.  The solar cycle from 2000 to 2004, 

corresponding to solar maximum (the years of my research data), shows a complicated 

pattern.  While April of 2000 was declared the peak solar (sunspot) maximum, there is 

actually a dip in the sunspot values then another peak occurring at the beginning of 2002.  

Figure 4.1 shows these two peaks and valley between them.  The large sunspot count is 

probably accounted for in the descending, daytime, trace (Figure 3.3) reflecting the solar 

quiet current system.  The Sq current system has much less of an effect during the 

nighttime, ascending, satellite pass resulting in lower values in Figure 3.2.  Although the 

absolute values of the ascending monthly Sq values are lower than that of the descending 

Sq values they should be closer to zero.  Some residual ring current component is  
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probably present in the ascending Sq values.  My solar quiet signal does, somewhat, 

agree with the solar cycle.   

On the descending Sq plot, January-March 2000 does have the largest negative values.  

The high Sq values for 2003 is somewhat mysterious, but could be explained by some 

large magnetic storms throughout the year making it tough to find a quiet signal.  

Interestingly, Figures 3.2 and 3.3 both show strong values during the spring and fall and 

weaker values during the northern hemisphere summer months.  This may be explained 

by direct sunlight at the equator during the vernal and autumnal equinoxes increasing the 

conductivity of the ionosphere.  Also, thermospheric winds, responsible for the Sq 

current system, are stronger during this time period. 

 

4.2 Limitations of the DMSP F-15 Derived Dst 

 Even with the good results of the DMSP derived Dst there are a some limitations 

to calculating the index from the F-15 satellite.  First, my solar quiet signal is averaged 

for all four years for each particular month.  This results in a solar quiet signal that is not 

solar cycle dependent.  Also, the satellite’s orbit is closer to the ring current than the 

magnetometers on the ground.  Thus, as stated in the factors for error section, delta By is 

estimated to be about six percent smaller at the ground-based magnetometers on the 

Earth’s surface than at an F-15 altitude of about 850 km.  Also, as the F-15 satellite orbits 

the planet the By axis does not align perfectly with a given magnetic meridian.  As stated 

previously, adding delta Bz could help to offset this limitation. 

Another limitation is the averaging I made between the ascending and descending 

magnetic equator passes.  The satellite takes approximately 90 to 100 minutes to orbit the 
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planet.  As a result, the time between the ascending and descending passes are 45 to 5

minutes apart.  Another diffe

0 

rence between these two passes is that the ascending pass 

s. 

l 

e error factors would have a slight 

ifference for each DMSP satellite.  Also, prior to F-15 launch, the SSM was not placed 

e DMSP satellites orbits that make 

 

 four 

vide this service on their 

happens in darkness while the descending pass occurs in the sunlight.  Therefore, I’m 

averaging two magnetometer values which are taken at two different times.  Naturally, 

this leads to some inaccuracy due to averaging the ascending and descending passe

 A derived Sq from the DMSP SSM would only be good when investigating a 

magnetic storm with the same spacecraft magnetometer data.  There are inherent 

differences in the instrument related error factors which were listed in section 2.7.  The 

error factors listed are SSM calibration, the spacecraft D/C magnetic field, solar cel

magnetic field, and the satellite’s attitude.  All of thes

d

on a five meter boom.  There are also differences in th

each spacecraft cross the magnetic equator at different times.  Therefore, a different Sq 

signal would need to be derived for each DMSP satellite.    

 

4.3 Future Work 

As stated in Section 2.4.1.1, use of the annual means for the horizontal component

of the geomagnetic field, H, defined for each observatory for the current year and the

preceding years delays the final index computation over a year.  To be operationally 

useful, a real-time or quick-look Dst, which uses only the mean H from the four 

preceding years, needs to be created.  Kyoto University does pro

website, but AFWA would like to have its own in-house method.  Ownership of their 

own Dst would remove the dependence of outside sources assuring uninterrupted input 
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into future models (i.e. the Magnetospheric Specification and Forecast Model (MSFM)) 

and help with assessing spacecraft anomalies.  I compared my DMSP derived Dst to 

Kyoto’s final ground-based Dst index.  If time permitted, and with more recent SSM d

from AFRL, I would have compared my method to the real-time index.  This research 

should lay the groundwork to use the DMSP to provide a real-time index from its 

ata 

agnet

ust be 

be 

 

.2 

Referring to Figure 4.1, the time frame of my data (2000 to 2003) is at range of 

ng to solar maximum.  A great follow-up to this research 

would 

t of 

tormy 

 

m ometer data. 

A stated limitation to my Dst method is that a different solar quiet signal m

derived from each DMSP satellite.  A useful future project would be to gather the Sq 

signal from other DMSP satellites and compare them to the F-15 values.  This would 

especially valuable to the post F-14 spacecrafts that have the SSM mounted to the 5 

meter boom.  A comparison of Sq values from F-15 and, say, F-13 (with body mounted 

SSM) probably would not compare very well.  To fully understand a comparison between

solar quiet signals of different DMSP satellites, the F-15 Sq signal depicted in Figures 3

and 3.3 show periodic variations that require further study.  

the solar cycle correspondi

be to continue with my Sq derivation to include a solar minimum period as well as 

the entire 11-year solar cycle.  This would require that the F-15 satellite be in operation 

until about 2007.  With this information one would only have to determine which par

the solar cycle you’re on and use the corresponding Sq signal to subtract from a s

period to gain a Dst index. 

Finally, the graphs of Figures 3.4 through 3.16 mostly show the DMSP derived

Dst representing a weaker storm than the observed ground-based index.  One would 
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expect the opposite with the satellite located approximately 850 km closer to the ring 

current.  As already stated, Dst measures magnetic field changes at the magnetic equa

due to the storm-time ring current where these changes are in the plane parallel to the 

ground.  Variations in the magnetic field are mostly along the DMSP’s Y-axis but not 

perfectly aligned with the magnetic meridian.  Therefore, using only Delta By in m

methodology may no

tor 

y 

t be complete in measuring the changes.  To encompass the effect of 

the Z c  

 

omponent, Delta Bz should be added to future calculations of a DMSP derived Dst

index.   
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